Saturating Auto-Encoders
نویسندگان
چکیده
We introduce a simple new regularizer for auto-encoders whose hidden-unit activation functions contain at least one zero-gradient (saturated) region. This regularizer explicitly encourages activations in the saturated region(s) of the corresponding activation function. We call these Saturating Auto-Encoders (SATAE). We show that the saturation regularizer explicitly limits the SATAE’s ability to reconstruct inputs which are not near the data manifold. Furthermore, we show that a wide variety of features can be learned when different activation functions are used. Finally, connections are established with the Contractive and Sparse Auto-Encoders.
منابع مشابه
On the Latent Space of Wasserstein Auto-Encoders
We study the role of latent space dimensionality in Wasserstein auto-encoders (WAEs). Through experimentation on synthetic and real datasets, we argue that random encoders should be preferred over deterministic encoders. We highlight the potential of WAEs for representation learning with promising results on a benchmark disentanglement task.
متن کاملLatent Dimensionality and Random Encoders
We study the role of latent space dimensionality in Wasserstein auto-encoders (WAEs). Through experimentation on synthetic and real datasets, we argue that random encoders should be preferred over deterministic encoders.
متن کاملLearning invariant features through local space contraction
We present in this paper a novel approach for training deterministic auto-encoders. We show that by adding a well chosen penalty term to the classical reconstruction cost function, we can achieve results that equal or surpass those attained by other regularized auto-encoders as well as denoising auto-encoders on a range of datasets. This penalty term corresponds to the Frobenius norm of the Jac...
متن کاملGenerative Adversarial Source Separation
Generative source separation methods such as non-negative matrix factorization (NMF) or auto-encoders, rely on the assumption of an output probability density. Generative Adversarial Networks (GANs) can learn data distributions without needing a parametric assumption on the output density. We show on a speech source separation experiment that, a multilayer perceptron trained with a Wasserstein-...
متن کاملTraining Auto-encoders Effectively via Eliminating Task-irrelevant Input Variables
Auto-encoders are often used as building blocks of deep network classifier to learn feature extractors, but task-irrelevant information in the input data may lead to bad extractors and result in poor generalization performance of the network. In this paper,via dropping the task-irrelevant input variables the performance of auto-encoders can be obviously improved .Specifically, an importance-bas...
متن کامل